104 research outputs found

    QueryTogether: Enabling entity-centric exploration in multi-device collaborative search

    Get PDF
    Collaborative and co-located information access is becoming increasingly common. However, fairly little attention has been devoted to the design of ubiquitous computing approaches for spontaneous exploration of large information spaces enabling co-located collaboration. We investigate whether an entity-based user interface provides a solution to support co-located search on heterogeneous devices. We present the design and implementation of QueryTogether, a multi-device collaborative search tool through which entities such as people, documents, and keywords can be used to compose queries that can be shared to a public screen or specific users with easy touch enabled interaction. We conducted mixed-methods user experiments with twenty seven participants (nine groups of three people), to compare the collaborative search with QueryTogether to a baseline adopting established search and collaboration interfaces. Results show that QueryTogether led to more balanced contribution and search engagement. While the overall s-recall in search was similar, in the QueryTogether condition participants found most of the relevant results earlier in the tasks, and for more than half of the queries avoided text entry by manipulating recommended entities. The video analysis demonstrated a more consistent common ground through increased attention to the common screen, and more transitions between collaboration styles. Therefore, this provided a better fit for the spontaneity of ubiquitous scenarios. QueryTogether and the corresponding study demonstrate the importance of entity based interfaces to improve collaboration by facilitating balanced participation, flexibility of collaboration styles and social processing of search entities across conversation and devices. The findings promote a vision of collaborative search support in spontaneous and ubiquitous multi-device settings, and better linking of conversation objects to searchable entities

    Intentstreams: Smart parallel search streams for branching exploratory search

    Get PDF
    The user's understanding of information needs and the information available in the data collection can evolve during an exploratory search session. Search systems tailored for well-defined narrow search tasks may be suboptimal for exploratory search where the user can sequentially refine the expressions of her information needs and explore alternative search directions. A major challenge for exploratory search systems design is how to support such behavior and expose the user to relevant yet novel information that can be difficult to discover by using conventional query formulation techniques. We introduce IntentStreams, a system for exploratory search that provides interactive query refinement mechanisms and parallel visualization of search streams. The system models each search stream via an intent model allowing rapid user feedback. The user interface allows swift initiation of alternative and parallel search streams by direct manipulation that does not require typing. A study with 13 participants shows that IntentStreams provides better support for branching behavior compared to a conventional search system

    Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal

    Get PDF
    The aim of this work was to evaluate the different phases formed during solidification and after thermal aging of the as-welded 625 nickel-based alloy, as well as the influence of microstructural changes on the mechanical properties. The experiments addressed aging temperatures of 650 and 950 A degrees C for 10, 100, and 200 hours. The samples were analyzed by electron microscopy, microanalysis, and X-ray diffraction in order to identify the secondary phases. Mechanical tests such as hardness, microhardness, and Charpy-V impact test were performed. Nondestructive ultrasonic inspection was also conducted to correlate the acquired signals with mechanical and microstructural properties. The results show that the alloy under study experienced microstructural changes when aged at 650 A degrees C. The aging was responsible by the dissolution of the Laves phase formed during the solidification and the appearance of gamma aEuro(3) phase within interdendritic region and fine carbides along the solidification grain boundaries. However, when it was aged at 950 A degrees C, the Laves phase was continuously dissolved and the excess Nb caused the precipitation of the delta-phase (Ni3Nb), which was intensified at 10 hours of aging, with subsequent dissolution for longer periods such as 200 hours. Even when subjected to significant microstructural changes, the mechanical properties, especially toughness, were not sensitive to the dissolution and/or precipitation of the secondary phases

    A platform for seamless context transfers in the mobile cloud

    No full text

    Active capacitive sensing: exploring a new wearable sensing modality for activity recognition

    No full text
    The paper describes the concept, implementation, and evaluation of a new on-body capacitive sensing approach to derive activity related information. Using conductive textile based electrodes that are easy to integrate in garments, we measure changes in capacitance inside the human body. Such changes are related to motions and shape changes of muscle, skin, and other tissue, which can in turn be related to a broad range of activities and physiological parameters. We describe the physical principle, the analog hardware needed to acquire and pre-process the signal, and example signals from different body locations and actions. We perform quantitative evaluations of the recognition accuracy, focused on the specific example of collar-integrated electrodes and actions, such as chewing, swallowing, speaking, sighing (taking a deep breath), as well as different head motions and positions

    Effect of broaching on high-temperature fatigue behavior in notched specimens of INCONEL 718

    No full text
    Notches were machined in specimens of INCONEL 718 by a broaching process, where differing broaching runs led to differing extents of subsurface deformation and surface roughness. Fatigue tests were carried out at 600°C with a trapezoidal loading waveform at 0.25 Hz. The broaching process that led to the more severe subsurface deformation (but lower surface roughness) showed the worst fatigue performance. Analysis of total strain amplitude in the notch root with the aid of an elasto-plastic finite-element (FE) model showed that the work hardening related to the subsurface deformation caused by the different broaching can account for the difference in fatigue lives. Differences in initiation and growth behavior were seen for the two broached finishes as well as for broached and subsequently polished samples. These differences are discussed in terms of a change in crack growth initiation and growth mechanisms due to the presence of the work-hardened layer
    • …
    corecore